VX‐765 alleviates motor and cognitive impairments via inhibiting PANoptosis activation in the neonatal rats after hypoxic–ischemic brain damage

Author:

Li Xiaohuan1,Chen Mulan1,Xu Boqing1,Fan Yepeng1,Dai Chunfang12,Dong Zhifang1ORCID

Affiliation:

1. Growth, Development, and Mental Health of Children and Adolescence Center Pediatric Research Institute Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders Children's Hospital of Chongqing Medical University Chongqing China

2. Department of Children Health Care Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China

Abstract

AbstractNeonatal hypoxia–ischemia (HI) is one of the main factors that cause neonatal severe neurologic impairment and death. Shown by a large number of studies, caspase‐1 plays a significant effect in diseases such as hypoxic–ischemic brain damage (HIBD) and may be a key component of the protein complex that initiates PANoptosis. VX‐765, an inhibitor of caspase‐1, exerts a potential neuroprotective effect in traumatic brain injury. However, it is unknown whether the administration of VX‐765 has neuroprotective effects on neonatal rats that suffered HIBD, and if so, the underlying mechanisms are also still unknown. In the present study, we found that treatment with VX‐765 (50 mg/kg, i.p.) significantly ameliorated the impairment of locomotor coordination functions and myodynamia as well as the spatial learning and memory in neonatal rats subjected with HIBD. These behavior improvements were attributed to VX‐765 reducing infarct volumes and neuronal loss in the CA1, CA3 region of hippocampus, and deeper layers of the cortex in HIBD rats. Moreover, the enzyme‐linked immunosorbent assay showed that VX‐765 obviously decreased the production of neuroinflammatory factors including TNF‐α, IL‐1β, and IL‐6. Importantly, we identified HI promoted PANoptosis activation in vivo and in vitro, and VX‐765 obviously suppressed PANoptosis activation. Finally, we demonstrated that VX‐765 treatment reversed neuronal injury induced by oxygen–glucose deprivation (OGD). Taken together, these results suggest that VX‐765 protects the neurons against damage by suppressing neuroinflammation and PANoptosis activation, thereby improving locomotor coordination and cognitive impairments in neonatal HIBD rats, indicating that VX‐765 may be an underlying therapeutic drug for the clinical treatment of hypoxic–ischemic encephalopathy (HIE).

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3