Defect identification of wind turbine blade based on multi‐feature fusion residual network and transfer learning
Author:
Affiliation:
1. College of Electrical Engineering Shanghai Dianji University Shanghai China
2. Maintenance Department Shanghai Electric Wind Power Group Co., Ltd. Shanghai China
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shanghai
Publisher
Wiley
Subject
General Energy,Safety, Risk, Reliability and Quality
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ese3.1024
Reference32 articles.
1. Stabilisation of event‐triggered‐based neural network control system and its application to wind power generation systems
2. A Review of the State of the Art of Power Electronics for Wind Turbines
3. Linear parameter‐varying modelling and control of an offshore wind turbine with constrained information
4. An Approach for Condition-Based Maintenance Optimization Applied to Wind Turbine Blades
5. CanturkR SlavkovskyE NiezreckiC InalpolatM.Wind turbine blade damage detection using various machine learning algorithms. ASME International Design Engineering Technical Conference/Computer and Information in Engineering Conference (IDETC/CIE) Charlotte NC AUG 21‐24 2016.
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Faulty bearing diagnostic model based on multi-dimensional signal and multi-analysis domain;Electrical Engineering;2024-08-21
2. Fault detection and isolation of floating wind turbine pitch system based on Kalman filter and multi-attention 1DCNN;Systems Science & Control Engineering;2024-06-04
3. Semi-supervised surface defect detection of wind turbine blades with YOLOv4;Global Energy Interconnection;2024-06
4. WTBD-YOLOv8: An Improved Method for Wind Turbine Generator Defect Detection;Sustainability;2024-05-24
5. Data Fusion and Ensemble Learning for Advanced Anomaly Detection Using Multi-Spectral RGB and Thermal Imaging of Small Wind Turbine Blades;Energies;2024-01-31
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3