Multiscale identification of the inorganic shell of core (Co)/shell‐assembled nanoparticles

Author:

Simon Ghilhem1ORCID,Costanzo Salvatore1ORCID,Lisiecki Isabelle1ORCID,Colomban Philippe1ORCID

Affiliation:

1. Sorbonne Université, CNRS, MONARIS, UMR8233 Paris France

Abstract

AbstractCore (Co)/shell (Co‐oxide) nanoparticles assembly exhibits interesting magnetic properties that depend on the inorganic shell characteristic (composition and crystalline structure). Assemblies of pure and partially oxidized cobalt (core/shell) nanoparticles, ~9 nm in diameter, were prepared and analyzed by techniques probing the matter at macroscale to nanoscale: UV–visible‐near‐infrared (NIR) transmission, FTIR, Raman microspectroscopy, and transmission electron microscopy. Attention is paid to compare nonoxidized and (partially) oxidized Co nanoparticles, coated with lauric acid as stabilizing agent (ligands). The approximately 1 nm disordered inorganic coating is perfectly detected by transmission electron microscopy, UV–visible–NIR, infrared, and Raman spectroscopy. The Raman spectrum is sensitive to laser wavelength and power due to the local heating induced by the laser, which modifies the interaction between the organic chains and the nanoparticle inorganic shell. For comparison, nanoparticle films were analyzed under heating from room temperature to 300°C. The “fusion” (dynamic disorder) of lauric (dodecanoic) chains is observed concomitantly with the merging of very low wavenumber Lambs' modes into a Rayleigh wing, which is consistent with an increase in the topological nanoparticle disorder. Hydroxylation or water adsorption is observed for Co film. The UV–visible–NIR and Raman spectra of the Co‐oxide shell do not correspond to that of CoO (rock salt) nor to that of Co3O4 (spinel) but has some similarity to that of 2D delafossite (CoOOH) phase.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3