Advances in hybrid format‐based neuro‐transfer function techniques for parametric modeling of microwave components

Author:

Ma Li1,Zhang Qi‐Jun2ORCID,Liu Wei1ORCID,Zhang Jianan3

Affiliation:

1. School of Microelectronics Tianjin University Tianjin China

2. Department of Electronics Carleton University Ottawa Ontario Canada

3. The State Key Laboratory of Millimeter Waves Southeast University Nanjing China

Abstract

AbstractElectromagnetic (EM) parametric modeling has become significant for EM designs of microwave devices. This paper outlines recent advances in hybrid format‐based neuro‐transfer function (TF) techniques for EM parametric modeling of microwave devices. To solve the problem of high‐sensitivity, a novel decomposition approach is discussed to develop a rational‐based neuro‐TF model of EM behavior of microwave devices. To handle the issue of non‐smoothness and discontinuity, a parametric modeling technique incorporating pole‐residue/rational and neural network hybrid transfer function (short for rational/pole‐residue hybrid neuro‐TF) of EM behavior is reviewed. This technique effectively combines rational and residue‐pole formats of the transfer functions. Compared with the residue‐pole‐based neuro‐TF modeling approach and the rational‐based neuro‐TF modeling approach, the rational/pole‐residue hybrid neuro‐TF technique allows for better accuracy in large geometrical changes and high order applications. A parametric modeling method combining neural network and polynomial‐transfer function (neuro‐PTF) is further presented as an advanced version of the rational/pole‐residue hybrid neuro‐TF method. In this approach, the pole–residue‐based transfer function and the polynomial function are used together to describe the EM responses, and can produce more accurate models, especially with large geometrical variables. Following the modeling process, trained models can be used to provide fast and accurate EM response predictions and can subsequently be used for advanced circuit and system design.

Funder

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Science Applications,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3