Chronic Exposure to Environmentally Relevant Concentrations of Imidacloprid Impact Survival and Ecologically Relevant Behaviors of Fathead Minnow Larvae

Author:

Jeninga Anya J.1,Wallace Zion1,Victoria Shayla2,Harrahy Elisabeth3,King‐Heiden Tisha C.1ORCID

Affiliation:

1. Department of Biology, River Studies Center University of Wisconsin‐La Crosse La Crosse Wisconsin USA

2. Department of Biomolecular Sciences University of Mississippi, University Mississippi USA

3. Department of Biology University of Wisconsin‐Whitewater Whitewater Wisconsin USA

Abstract

AbstractImidacloprid (IM) has emerged as a contaminant of concern in several areas within the United States due to its frequent detection in aquatic ecosystems and its pseudo‐persistence, which pose potential risks to nontarget species. We evaluated the sublethal toxicity of IM to fathead minnow larvae following chronic exposure beginning just after fertilization. Our in silico analysis and in vivo bioassays suggest that IM has a low binding affinity for the vertebrate nicotinate acetylcholine receptor (nAChR), as expected. However, chronic exposure to ≥0.16 µg IM/L reduced survival by 10%, and exposure to ≥18 µg IM/L reduced survival by approximately 20%–40%. Surviving fish exposed to ≥0.16 µg IM/L showed reduced growth, altered embryonic motor activity, and premature hatching. Furthermore, a significant proportion of fish exposed to ≥0.16 µg IM/L were slower to respond to vibrational stimuli and slower to swim away, indicating that chronic exposure to IM has the potential to impair the ability of larvae to escape predation. The adverse health effects we observed indicate that chronic exposure to environmentally relevant concentrations of IM may elicit sublethal responses that culminate in a significant increase in mortality during early life stages, ultimately translating to reduced recruitment in wild fish populations. Environ Toxicol Chem 2023;42:2184–2192. © 2023 SETAC

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Environmental Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3