Optimal designs of accelerated degradation tests with random shock failures and measurement errors

Author:

Wu Lin1,Zhou Xiao‐Dong2ORCID,Yue Rong‐Xian13

Affiliation:

1. Department of Mathematics Shanghai Normal University Shanghai China

2. School of Statistics and Information Shanghai University of International Business and Economics Shanghai China

3. Faculty of Foundational Curriculumm Fuyao University of Science and Technology Fuzhou China

Abstract

AbstractAccelerated degradation tests (ADTs) are widely used for assessing the reliability of long‐life products. During an ADT, accelerated stresses not only expedite the degradation of test products but also increase the likelihood of encountering traumatic shocks. Moreover, it is important to acknowledge that measurement errors can be inevitable during the observation process of an ADT. Unfortunately, these errors are often overlooked in the optimal design of the ADT, especially when multiple competing failure modes are present. In this article, we propose a new approach to design ADTs when measurement errors exist and test products suffer from degradation failures and random shock failures. We utilize the Wiener process to model the degradation path, incorporating normally distributed measurement errors, and an exponential distribution to fit the time between random shock failures. Given the number of test products and the termination time, we optimize the ADT plans under three common design criteria. The equivalence theorem is used to verify the optimality of the optimal ADT plans. A real‐life example and sensitivity analysis are provided to illustrate our proposed method. The results demonstrate that when competing failure modes are present, the optimal ADT plans, which account for measurement errors, differ significantly from those that do not consider such errors.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3