Effects of neodymium magneto‐priming on seed germination and salinity tolerance in tomato

Author:

Abhary Mohammad K.1ORCID,Akhkha Abdullah1

Affiliation:

1. Biology Department, Faculty of Science Taibah University Medinah Saudi Arabia

Abstract

AbstractEarth's biosphere is surrounded by magnetic fields that affect all living organisms. A plant's response to magnetic fields is displayed in terms of its seed's vigor, growth, and yield. Examining seed germination in such magnetic fields is the first step in the investigation of how magnetic fields might be used to enhance plant growth and maximize crop performance. In this study, salinity‐sensitive Super Strain‐B tomato seeds were primed with the northern and southern poles of neodymium magnets of 150, 200, and 250 mT. The magneto‐primed seeds showed a significant increase in germination rate and speed, where the orientation of the magnet was identified as being crucial for germination rate and the orientation of seeds towards the magnet was shown to affect the germination speed. The primed plants exhibited enhanced growth characteristics, including longer shoots and roots, larger leaf area, more root hairs, higher water content, and more tolerance to salinity levels, up to 200 mM NaCl. All magneto‐primed plants showed a significant decrease in chlorophyll content, continuous chlorophyll fluorescence yield (Ft), and quantum yield (QY). The salinity treatments decreased all chlorophyll parameters in control plants, significantly, but did not lower such parameters in magneto‐primed tomatoes. The results of this study illustrate the positive effects of neodymium magnet on the growth and development of tomato plants in terms of their germination, growth, and salinity tolerance, and negatively affected the chlorophyll content in tomato leaves. © 2023 Bioelectromagnetics Society.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Physiology,General Medicine,Biophysics

Reference44 articles.

1. Chlorophyll fluorescence of the desert plant Calotropis procera grown under water deficit stress;Akhkha A;Biosciences,2009

2. Tomato fruit quality as influenced by salinity and nitric oxide

3. Hydrogen peroxide signaling integrates with phytohormones during the germination of magnetoprimed tomato seeds

4. Effects of Magnetic Fields on Tomato Ripening

5. Effect of permanent magnetic fields with different intensities on the wheat growth rate;Bogatina NI;DANU SSR Serja B,1978

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3