Space and chaos‐expansion Galerkin proper orthogonal decomposition low‐order discretization of partial differential equations for uncertainty quantification

Author:

Benner Peter12ORCID,Heiland Jan12ORCID

Affiliation:

1. Computational Methods in Systems and Control Theory Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany

2. Faculty of Mathematics Otto‐von‐Guericke‐University Magdeburg Germany

Abstract

AbstractThe quantification of multivariate uncertainties in partial differential equations can easily exceed any computing capacity unless proper measures are taken to reduce the complexity of the model. In this work, we propose a multidimensional Galerkin proper orthogonal decomposition that optimally reduces each dimension of a tensorized product space. We provide the analytical framework and results that define and quantify the low‐dimensional approximation. We illustrate its application for uncertainty modeling with polynomial chaos expansions and show its efficiency in a numerical example.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Applied Mathematics,General Engineering,Numerical Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3