Quality control of 3D MRSI data in glioblastoma: Can we do without the experts?

Author:

Tensaouti Fatima12ORCID,Desmoulin Franck2,Gilhodes Julia3,Martin Elodie3ORCID,Ken Soleakhena4,Lotterie Jean‐Albert25,Noël Georges6,Truc Gilles7,Sunyach Marie‐Pierre8,Charissoux Marie9,Magné Nicolas10,Lubrano Vincent2,Péran Patrice2,Cohen‐Jonathan Moyal Elizabeth111,Laprie Anne12

Affiliation:

1. Department of Radiation Oncology Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse—Oncopôle Toulouse France

2. ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS Toulouse France

3. Department of Biostatistics Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse—Oncopôle Toulouse France

4. Department of Engineering and Medical Physics Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse—Oncopôle Toulouse France

5. Department of Nuclear Medicine CHU Toulouse Toulouse France

6. ICANS—Radiation Oncology Strasbourg Strasbourg France

7. Department of Radiation Oncology Centre Georges‐François Leclerc Dijon France

8. Department of Radiation Oncology Centre Léon‐Bérard Lyon France

9. Department of Radiation Oncology Institut du Cancer de Montpellier Montpellier France

10. Department of Radiation Oncology Institut de Cancérologie de la Loire Lucien Neuwirth Saint‐Priest‐en‐Jarez France

11. Inserm U1037—Centre de Recherches Contre le Cancer de Toulouse Toulouse France

Funder

Fondation pour la Recherche Médicale

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging

Reference30 articles.

1. Proton Magnetic Resonance Spectroscopic Imaging in Newly Diagnosed Glioblastoma: Predictive Value for the Site of Postradiotherapy Relapse in a Prospective Longitudinal Study

2. Evaluation of Lactate as a Predictive Marker of Survival and Local Response to Radiation Therapy in Patients With GBM

3. Methodological consensus on clinical proton MRS of the brain: Review and recommendations

4. Integration method of 3D MR spectroscopy into treatment planning system for glioblastoma IMRT dose painting with integrated simultaneous boost

5. GurbaniSS CoulterWH ShimH et al.Machine learning enables the use of spectroscopic MRI to guide radiation therapy in patients with glioblastoma. A Dissertation Presented to The Academic Faculty in the Machine learning enables the use of spectroscopic MRI to guide radiation therapy in patients with glioblastoma. Published online 2019.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3