First direct machine‐specific parameters incorporated in Spot‐scanning Proton Arc (SPArc) optimization algorithm

Author:

Liu Gang123,Fan Qingkun4,Zhao Lewei5,Liu Peilin6,Cong Xiaoda6,Yan Di6,Li Xiaoqiang6,Ding Xuanfeng6

Affiliation:

1. Cancer Center, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China

2. Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China

3. Institute of Radiation Oncology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China

4. School of Mathematics and Statistics Wuhan University Wuhan China

5. Department of Radiation Oncology Stanford University California USA

6. Department of Radiation Oncology Corewell Health William Beaumont University Hospital Royal Oak Michigan USA

Abstract

AbstractBackgroundSpot‐scanning Proton Arc (SPArc) has been of significant interest in recent years because of its superior plan quality. Currently, the primary focus of research and development is on deliverability and treatment efficiency.PurposeTo address the challenges in generating a deliverable and efficient SPArc plan for a proton therapy system with a massive gantry, we developed a novel SPArc optimization algorithm (SPArcDMPO) by directly incorporating the machine‐specific parameters such as gantry mechanical constraints and proton delivery sequence.MethodsSPArc delivery sequence model (DSMarc) was built based on the machine‐specific parameters of the prototype arc delivery system, IBA ProteusONE®, including mechanical constraint (maximum gantry speed, acceleration, and deceleration) and proton delivery sequence (energy and spot delivery sequence, and irradiation time). SPArcDMPO resamples and adjusts each control point's delivery speed based on the DSMarc calculation through the iterative approach. In SPArcDMPO, users could set a reasonable arc delivery time during the plan optimization, which aims to minimize the gantry momentum changes and improve the delivery efficiency. Ten cases were selected to test SPArcDMPO. Two kinds of SPArc plans were generated using the same planning objective functions: (1) original SPArc plan (SPArcoriginal); (2) SPArcDMPO plan with a user‐pre‐defined delivery time. Additionally, arc delivery sequence was simulated based on the DSMarc and was compared. Treatment delivery time was compared between SPArcoriginal and SPArcDMPO. Dynamic arc delivery time, the static irradiation time, and its corresponding time differential (time differential = dynamic arc delivery time—static irradiation time) were analyzed, respectively. The total gantry velocity change was accumulated throughout the treatment delivery.ResultsWith a similar plan quality, objective value, number of energy layers, and spots, both SPArcoriginal and SPArcDMPO plans could be delivered continuously within the ± 1 degree tolerance window. However, compared to the SPArcoriginal, the strategy of SPArcDMPO is able to reduce the time differential from 30.55 ± 11.42%(90 ± 32 s) to 14.67 ± 6.97%(42 ± 20 s), p < 0.01. Furthermore, the corresponding total variations of gantry velocity during dynamic arc delivery are mitigated (SPArcoriginal vs. SPArcDMPO) from 14.73 ± 9.14 degree/s to 4.28 ± 2.42 degree/s, p < 0.01. Consequently, the SPArcDMPO plans could minimize the gantry momentum change based on the clinical user's input compared to the SPArcoriginal plans, which could help relieve the mechanical challenge of accelerating or decelerating the massive proton gantry.ConclusionsFor the first time, clinical users not only could generate a SPArc plan meeting the mechanical constraint of their proton system but also directly control the arc treatment speed and momentum changes of the gantry during the plan optimization process. This work paved the way for the routine clinical implementation of proton arc therapy in the treatment planning system.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3