Assessing the impact of bias correction approaches on climate extremes and the climate change signal

Author:

Zhang Hong1ORCID,Chapman Sarah1,Trancoso Ralph12,Toombs Nathan1,Syktus Jozef2

Affiliation:

1. Climate Projections and Services, Department of Energy and Climate Queensland Government Brisbane QLD Australia

2. School of Biological Sciences The University of Queensland Brisbane QLD Australia

Abstract

AbstractWe assess the impact of three bias correction approaches on present day means and extremes, and climate change signal, for six climate variables (precipitation, minimum and maximum temperature, radiation, vapour pressure and mean sea level pressure) from dynamically downscaled climate simulations over Queensland, Australia. Results show that all bias‐correction methods are effective at removing systematic model biases, however the results are variable and season‐dependent. Importantly, our results are based on fully independent cross‐validation, an advantage over similar studies. Linear scaling preserves the climate change signals for temperature, while quantile mapping and the distribution‐based transfer function modify the climate change signal and patterns of change. The Perkins score for all the values above the 95th percentile and below the 5th percentile was used to evaluate how well the climate model matches the observational data. Bias correction improved Perkins score for extremes for some variables and seasons. We rank the bias‐correction methods based on the Kling–Gupta efficiency (KGE) score calculated during the validation period. We find that linear scaling and empirical quantile mapping are the best approaches for Queensland for mean climatology. On average, bias correction led to an improvement in the KGE score of 23% annually. However, in terms of extreme values, quantile mapping and statistical distribution‐based transfer function approaches perform best, and linear scaling tends to perform worst. Our results show that, except linear scaling, all approaches impact the climate change signal.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3