Characterization of Epithelial Cell Adhesion Molecule as a Surface Marker on Undifferentiated Human Embryonic Stem Cells

Author:

Ng Valerie Y.1,Ang Sheu Ngo1,Chan Jia Xin1,Choo Andre B.H.12

Affiliation:

1. Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore

2. Division of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore

Abstract

Abstract Human embryonic stem cells (hESCs) have the capacity to remain pluripotent and self-renew indefinitely. To discover novel players in the maintenance of hESCs, we have previously reported the generation of monoclonal antibodies that bind to cell surface markers on hESCs, and not to mouse embryonic stem cells or differentiated embryoid bodies. In this study, we have identified the antigen target of one such monoclonal antibody as the epithelial cell adhesion molecule (EpCAM). In undifferentiated hESCs, EpCAM is localized to Octamer 4 (OCT4)-positive pluripotent cells, and its expression is down-regulated upon differentiation. To further understand its biological function in hESCs, endogenous EpCAM expression was silenced using small interfering RNA. EpCAM knockdown had marginal negative effects on OCT4 and TRA-1-60 expression, however cell proliferation was decreased by >40%. Examination of lineage marker expression showed marked upregulation of endoderm and mesoderm genes in EpCAM-silenced cells, under both pluripotent and differentiating conditions. These results were validated using a hESC line whose EpCAM expression has been stably knocked down. Data from the stable line confirmed that downregulation of EpCAM decreases cell growth and increases gene expression in the endoderm and mesoderm lineages. In vivo, hESCs lacking EpCAM were able to form teratomas containing tissues representing the three germ layers, and gene expression analysis yielded marked increase in the endoderm marker alpha fetoprotein compared with control. Together these data demonstrate that EpCAM is a surface marker on undifferentiated hESCs and plays functional roles in proliferation and differentiation.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3