The effects of increasing filler loading on the contact resistivity of interconnects based on silver–epoxied conductive adhesives and silver metallization pastes

Author:

Devoto Acevedo Maria Ignacia12ORCID,Wells Rich3,Großer Stephan4,Wienands Karl1,Rudolph Dominik1,Halm Andreas1,Gottschalg Ralph24ORCID,Tune Daniel1ORCID

Affiliation:

1. International Solar Energy Research Center (ISC) Konstanz Constance Germany

2. Hochschule Anhalt/Anhalt University of Applied Sciences Köthen Germany

3. Nagase ChemteX America Corp Delaware Ohio USA

4. Fraunhofer Center for Silicon Photovoltaics (CSP) Halle (Saale) Germany

Abstract

AbstractOur previous work highlighted how microscopic structural effects influence the sheet and contact resistance of electrically conductive adhesives (ECAs). Herein, we delve further by investigating how the contact and bulk resistivity of several ECAs that are based on the same formulation, but with different filler content, are correlated with the filler content. Additionally, two different filler geometries — high and low surface area (HSA and LSA) fillers — are combined in different ratios to maintain a similar viscosity and therefore processability. Hence, contact and bulk resistivities are also correlated with the different geometry ratios of these two fillers. As expected, it was found that the contact and bulk resistivities decreased when the filler content was increased. However, the magnitude of the decrease was found to depend strongly on the filler geometry ratio. At extreme filler geometry ratios, when the bulk is either mostly loaded with HSA‐fillers or mostly with LSA‐fillers, the impact of changes in the filler content on the bulk and contact resistivities is markedly different. The measured data is interpreted within the context of percolation theory and it is determined that the optimum ratio of the LSA and HSA Ag‐fillers investigated in this study is approximately 60:40 (for an epoxy‐based adhesive). This work has important ramifications for the design of ECAs, where cost considerations and the need to reduce silver resource usage demand the lowest (silver) filler content, but the demands of product performance point to higher filler content.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3