Shotcrete 3D Printing ‐ Effect of material‐process interaction on the global and local material density

Author:

Böhler David1,Freund Niklas1,Mai Inka12,Lowke Dirk1

Affiliation:

1. TU Braunschweig, Institute of Building Materials, Concrete Construction and Fire Safety (iBMB) Braunschweig Germany

2. TU Berlin, Institute of Civil Engineering, Chair of Robotic Fabrication of the Built Environment Berlin Germany

Abstract

AbstractShotcrete 3D Printing is a 3D printing process in which the concrete is applied layer by layer using a wet mix process. In the print process, a large number of different process as well as material parameters can be varied, which also influence the hardened concrete properties. A systematic understanding of the interaction between material and process is required to define limits for material and process control variables with respect to the resulting component quality. Therefore, in this paper we present results on the effect of concrete volume flow (0.4; 0.8 m3/h), air volume flow (30; 40; 50 m3/h) and accelerator dosage (0; 3; 6 % by weight of cement) on global density, local density distribution as well as flexural strength. The results show that the combination of an increasing concrete volume flow, a decreasing air volume flow and an increasing accelerator dosage lead to a decrease in global density and flexural strength. A high correlation between the global density and flexural strength can be demonstrated despite the layer‐by‐layer fabrication. In addition, an inhomogeneous density distribution over the cross section is shown. Finally, the underlying mechanisms are discussed regarding the influence of the material and process parameters.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3