Phylogeny and morphological evolution of the Neotropical genus Cuspidaria (Bignonieae, Bignoniaceae): Combining high‐throughput sequencing and targeted loci data

Author:

Francisco Jéssica N.C.1ORCID,Fonseca Luiz Henrique M.2ORCID,Lohmann Lúcia G.13ORCID

Affiliation:

1. Departamento de Botânica Instituto de Biociências, Universidade de São Paulo Rua do Matão, 277 05508‐090 São Paulo SP Brazil

2. Systematic and Evolutionary Botany Laboratory, Department of Biology Ghent University Ghent Belgium

3. University and Jepson Herbaria, and Department of Integrative Biology University of California Berkeley California 94720‐3140 U.S.A.

Abstract

AbstractThe combined use of high‐throughput sequencing (HTS) with targeted loci data offers an excellent opportunity to reconstruct robust and comprehensive phylogenies at fine taxonomic scales using a hybrid approach. In this study, we infer the phylogeny of Cuspidaria (Bignonieae, Bignoniaceae), a diverse clade of lianas and shrubs centered in South America's wet and dry forests. We used HTS to obtain complete or nearly complete plastome sequences of seven individuals of Cuspidaria selected to represent the main clades in the genus. This sampling strategy aimed to reconstruct relationships at deeper nodes (i.e., backbone). We also used targeted loci data obtained through Sanger sequencing to obtain sequences of two chloroplast markers (ndhF, rpl32‐trnL) and one nuclear marker (PepC) for multiple individuals of 18 out of the 21 species of Cuspidaria recognized in the most recent treatment of the genus; only C. emmonsii, C. lachnaea, and C. simplicifolia were not sampled. This broad sampling strategy aimed to test the monophyly of individual species and reconstruct fine‐scale interspecific relationships within the genus. Both datasets were analyzed separately and combined using Bayesian inference and maximum likelihood approaches. The combined dataset includes 65 individuals representing 18 previously recognized species of Cuspidaria plus outgroup taxa. The analysis of the combined dataset recovered a monophyletic Cuspidaria, excluding C. bracteata, which was nested within the outgroup and is best treated elsewhere. Ancestral character state reconstructions provided novel insights into the evolution of morphology and identified multiple putative morphological synapomorphies for key lineages of Cuspidaria. Namely, anthers curved forward was reconstructed as a potential synapomorphy for the Cuspidaria clade, whereas interpetiolar gland fields in stems and inflorescence, subulate or inconspicuous prophylls of the axillary buds, biternate leaves, actinodromous venation, calyx cupulate or spathaceous, calyx apices dentate or irregularly lobed, fruits with winged valves, and fruit midrib limited by two longitudinal ridges were reconstructed as potential synapomorphies of different clades within the genus. Other traits such as habit, tertiary venation, inflorescence type, corolla color, number of ovule series, and pollen unit were highly labile. As circumscribed here, Cuspidaria is composed of eight main clades supported by molecular data and morphological synapomorphies: Sideropogon, Tetrastichella, Cinerea, Paracarpaea, Cremastus, Blepharitheca, Saldanhaea, and Cuspidaria s.str. clades. All species are monophyletic, except for C. pulchra and C. sceptrum, which form a species complex and are best treated as a single taxon. The necessary taxonomic changes are proposed, leading to the recognition of 19 species in Cuspidaria.

Publisher

Wiley

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3