Crossing the threshold: Invasive grasses inhibit forest restoration on Hawaiian islands

Author:

Rehm Evan M.1ORCID,D'Antonio Carla2,Yelenik Stephanie34ORCID

Affiliation:

1. Biology Department Austin Peay State University Clarksville Tennessee USA

2. Department of Ecology, Evolution and Marine Biology University of California at Santa Barbara Santa Barbara California USA

3. U.S. Geological Survey Pacific Island Ecosystems Research Center Volcano Hawaii USA

4. Rocky Mountain Research Station US Forest Service Reno Nevada USA

Abstract

AbstractForest removal for livestock grazing is a striking example of human‐caused state change leading to a stable, undesirable invasive grass system that is resistant to restoration efforts. Understanding which factors lead to resilience to the alternative grass state can greatly benefit managers when planning forest restoration. We address how thresholds of grass cover and seed rain might influence forest recovery in a restoration project on Hawaiʻi Island, USA. Since the 1980s, over 400,000 Acacia koa (koa) trees have been planted across degraded pasture, and invasive grasses still dominate the understory with no native woody‐plant recruitment. Between this koa/grass matrix are remnant native Metrosideros polymorpha (ʻōhiʻa) trees beneath which native woody plants naturally recruit. We tested whether there were threshold levels of native woody understory that accelerate recruitment under both tree species by monitoring seed rain at 40 trees (20 koa and ʻōhiʻa) with a range of native woody understory basal area (BA). We found a positive relationship between total seed rain (but not bird‐dispersed seed rain) and native woody BA and a negative relationship between native woody BA and grass cover, with no indication of threshold dynamics. We also experimentally combined grass removal levels with seed rain density (six levels) of two common understory species in plots under koa (n = 9) and remnant ʻōhiʻa (n = 9). Few seedlings emerged when no grass was removed despite adding seeds at densities two to 75 times higher than naturally occurring. However, seedling recruitment increased two to three times once at least 50% of grass was removed. Existing survey data of naturally occurring seedlings also supported a threshold of grass cover below which seedlings were able to establish. Thus, removal of all grasses is not necessary to achieve system responses: Even moderate reductions (~50%) can increase rates of native woody recruitment. The nonlinear thresholds found here highlight how incremental changes to an inhibitory factor lead to limited restoration success until a threshold is crossed. The resources needed to fully eradicate an invasive species may be unwarranted for state change, making understanding where thresholds lie of the utmost importance to prioritize resources.

Funder

NSF

Publisher

Wiley

Subject

Ecology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3