Studies of hydrogen isotope scrambling during the dehalogenation of aromatic chloro‐compounds with deuterium gas over palladium catalysts

Author:

Lockley William J.S.1ORCID,Venanzi Niccolò A. E.2ORCID,Crane Georgie J.1

Affiliation:

1. Department of Chemistry, Faculty of Engineering and Physical Sciences University of Surrey Guildford UK

2. Department of Chemistry University College London London UK

Abstract

Catalytic dehalogenation of aromatic halides using isotopic hydrogen gas is an important strategy for labelling pharmaceuticals, biochemicals, environmental agents and so forth. To extend, improve and further understand this process, studies have been carried out on the scrambling of deuterium isotope with protium during the catalytic deuterodehalogenation of model aryl chlorides using deuterium gas and a palladium on carbon catalyst in tetrahydrofuran solution. The degree of scrambling was greatest with electron‐rich chloroarene rings. The tetrahydrofuran solvent and the triethylamine base were not the source of the undesired protium; instead, it arose, substantially, from the water content of the catalyst, though other sources of protium may also be present on the catalyst. Replacement of the Pd/C catalyst with one prepared in situ by reduction of palladium trifluoroacetate with deuterium gas and dispersed upon micronised polytetrafluoroethylene led to much reduced scrambling (typically 0–6% compared with up to 40% for palladium on carbon) and to high atom% abundance, regiospecific labelling. The improved catalytic system now enables efficient polydeuteration via the dehalogenation of polyhalogenated precursors, making the procedure viable for the preparation of MS internal standards and, potentially, for high specific activity tritium labelling.

Publisher

Wiley

Subject

Organic Chemistry,Spectroscopy,Drug Discovery,Radiology, Nuclear Medicine and imaging,Biochemistry,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3