Affiliation:
1. School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou 730070 People's Republic of China
2. Department of Chemistry, College of Sciences King Saud University Riyadh 11451 Saudi Arabia
3. Department of Chemistry, Faculty of Science University of Lucknow Lucknow 226 007 India
Abstract
In this study, we synthesized and characterized a new Co(II)‐based coordination polymer, denoted as {[Co(HL)(dpa)]·H2O}n (1), derived from the H3L ligand and dpa co‐ligand. Single crystal X‐ray diffraction revealed that 1 forms a two‐dimensional (2D) layer and a three‐dimensional (3D) supramolecular structure via hydrogen bonding interactions. Presence of carboxylic acid groups in 1 was confirmed by X‐ray crystallography, prompting investigation into its proton transport properties. Additionally, electrostatic potential surface and nucleophilic index analyses were conducted to simulate potential proton transfer pathways. Furthermore, we prepared nine modified encapsulated materials using 1 as the base material (SDA@1, APH@1, APY@1, TA@1, BA@1, DIC@1, IDZ@1, SCA@1, and TYD@1), and tested their proton conductivity and activation energy compared to pure Nafion membrane and 1, analyzing the influence of different small molecule structures on proton conductivity. Comparative analysis revealed that only SDA@1 exhibited enhanced proton conductivity and reduced activation energy at 303 K, with an improvement rate of 220.8%. We hope that the methods presented herein can provide valuable insights for the design and development of high‐performance proton‐conducting materials, as well as for the exploration of proton conduction mechanisms.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献