Synthesis, structure, and small molecule in situ modification effects on proton conduction properties of triazine‐based triscarboxylic acid complexe

Author:

Li Duqingcuo1,Qin Tianrui1,Shi Zhan1,Li Yuyan1,Dong Xiuyan1ORCID,Muddassir Mohd.2,Kushwaha Aparna3,Srivastava Devyani3ORCID,Kumar Abhinav3ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou 730070 People's Republic of China

2. Department of Chemistry, College of Sciences King Saud University Riyadh 11451 Saudi Arabia

3. Department of Chemistry, Faculty of Science University of Lucknow Lucknow 226 007 India

Abstract

In this study, we synthesized and characterized a new Co(II)‐based coordination polymer, denoted as {[Co(HL)(dpa)]·H2O}n (1), derived from the H3L ligand and dpa co‐ligand. Single crystal X‐ray diffraction revealed that 1 forms a two‐dimensional (2D) layer and a three‐dimensional (3D) supramolecular structure via hydrogen bonding interactions. Presence of carboxylic acid groups in 1 was confirmed by X‐ray crystallography, prompting investigation into its proton transport properties. Additionally, electrostatic potential surface and nucleophilic index analyses were conducted to simulate potential proton transfer pathways. Furthermore, we prepared nine modified encapsulated materials using 1 as the base material (SDA@1, APH@1, APY@1, TA@1, BA@1, DIC@1, IDZ@1, SCA@1, and TYD@1), and tested their proton conductivity and activation energy compared to pure Nafion membrane and 1, analyzing the influence of different small molecule structures on proton conductivity. Comparative analysis revealed that only SDA@1 exhibited enhanced proton conductivity and reduced activation energy at 303 K, with an improvement rate of 220.8%. We hope that the methods presented herein can provide valuable insights for the design and development of high‐performance proton‐conducting materials, as well as for the exploration of proton conduction mechanisms.

Funder

King Saud University

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3