MicroRNA‐26a deficiency attenuates the severity of frozen shoulder in a mouse immobilization model

Author:

Sumimoto Yasuhiko1ORCID,Harada Yohei1,Yimiti Dilimulati1,Watanabe Chikara1,Miyaki Shigeru12ORCID,Adachi Nobuo1

Affiliation:

1. Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan

2. Medical Center for Translational and Clinical Research Hiroshima University Hospital Hiroshima Japan

Abstract

AbstractThe main pathogenesis of the frozen shoulder is thought to be the inflammation of the intra‐articular synovium and subsequent fibrosis of the shoulder joint capsule. However, the molecular pathogenesis of the frozen shoulder is still unknown. A class of noncoding RNAs, microRNAs contribute to various diseases including musculoskeletal diseases. MicroRNA‐26a (miR‐26a) has been reported to be associated with fibrosis in several organs. This study aims to reveal the role of miR‐26a on fibrosis in the shoulder capsule using a frozen shoulder model in miR‐26a deficient (miR‐26a KO) mice. MiR‐26a KO and wild‐type (WT) mice were investigated using a frozen shoulder model. The range of motion (ROM) of the shoulder, histopathological changes such as synovitis, and fibrosis‐related gene expression in the model mice were evaluated to determine the role of miR‐26a. In WT mice, both inflammatory cell infiltration and thickening of the inferior shoulder joint capsule were observed after 1 week of immobilization, and this thickening further progressed over the subsequent 6 weeks. However, the immobilized shoulder in miR‐26a KO mice consistently exhibited significantly better ROM compared with WT mice at 1 and 6 weeks, and histological changes were significantly less severe. The expression of inflammation‐ and fibrosis‐related genes was decreased in the miR‐26a KO mice compared with WT mice at 1 and 6 weeks. Together, miR‐26a deficiency attenuated the severity of frozen shoulder in the immobilization model mouse. The present study suggests that miR‐26a has the potential to be a target miRNA for therapeutic approach to frozen shoulder.

Publisher

Wiley

Reference43 articles.

1. Upper extremity: emphasis on frozen shoulder;Sheridan MA;Orthop Clin North Am,2006

2. Primary frozen shoulder: brief review of pathology and imaging abnormalities;Tamai K;J Orthop Sci,2014

3. The natural history of the frozen shoulder syndrome;Reeves B;Scand J Rheumatol,1975

4. The natural history of “idiopathic” frozen shoulder;Grey RG;J Bone Joint Surg Am,1978

5. Frozen shoulder. A long‐term follow‐up;Shaffer B;J Bone Joint Surg Am,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3