Impact of moisture on the degradation and priming effects of poly(lactic acid) microplastic

Author:

Xiao Congli1,Liu Xinhui2,Wang Dandan3,Xue Jiantao1,Liu Lihu1,Yu Yongxiang1ORCID,Yao Huaiying1ORCID

Affiliation:

1. Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering Wuhan Institute of Technology Wuhan China

2. Hebei Provincial Key Laboratory of Soil Ecology, Hebei Provincial Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology The Chinese Academy of Sciences Shijiazhuang China

3. College of Urban and Environmental Sciences Hubei Normal University Huangshi China

Abstract

AbstractThe degradation of biodegradable microplastics (MPs) can either stimulate or inhibit the decomposition of soil organic carbon (SOC), but the factors influencing these phenomena remain unclear. In this study, we used the 13C natural abundance to differentiate between carbon dioxide (CO2) arising from the mineralization of SOC and poly(lactic acid) (PLA) MP under varying soil water holding capacity (WHC) in alkaline and acidic soils. We also quantified the incorporation of soil‐ or PLA‐derived carbon (C) into phospholipid fatty acid (PLFA)‐distinguishable microbial groups. An increase in soil moisture did not significantly affect PLA MP degradation in alkaline soil, but significantly increased PLA degradability in acidic soil. In particular, the percentages of PLA‐derived C incorporated into PLFA‐distinguishable gram‐negative and gram‐positive bacteria were 14%–63% and 5%–33%, respectively, in all the treatments. The presence of PLA MP induced positive priming effects from 0 to 20 d in all the treatments but subsequently induced negative priming effects under some conditions. The total priming effects induced by PLA MP were significantly greater in alkaline soil with ≥70% WHC (37–43 mg C kg−1 soil) than in this soil with 50% WHC (8.6 mg C kg−1 soil). The total priming effect was 72–78 mg C kg−1 soil in acidic soil with ≤70% WHC, but a negative priming effect was observed in this soil with 90% WHC (−56 mg C kg−1 soil). In alkaline soil, the dissolved organic carbon content was positively correlated with the priming effect, but a negative relationship was observed between the priming effect and the amount of soil‐derived C incorporated into gram‐negative bacteria and fungi. In acidic soil, a positive correlation was found between the priming effect and the soil nitrate content. In summary, our findings indicate that 0.4%–2.8% of PLA MP was degraded in soils after 2 months, and that the intensity and direction of the priming effect induced by PLA MP are regulated by soil moisture and pH, but further exploration is needed to elucidate the microbial mechanisms underlying these effects.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3