Electrical and optical properties of environmental friendly Li(1‐x)Smx/3NbO3 ceramics for high‐temperature energy storage applications

Author:

Satyarthi Satyendra Kumar12,Singh Vishwa Pratap12,Verma Harish3,Singh Akhilesh Kumar1ORCID

Affiliation:

1. School of Materials Science and Technology Indian Institute of Technology (Banaras Hindu University) Varanasi India

2. Department of Ceramic Engineering Indian Institute of Technology (Banaras Hindu University) Varanasi India

3. Department of Physics Indian Institute of Technology (Banaras Hindu University) Varanasi India

Abstract

AbstractThis research article delves into the synthesis and characterization of Li(1‐x)Sm(x/3)NbO3 ceramic, employing a high‐energy ball milling process. The investigation explores the incorporation of Sm3+ at the Li+1 site across a range of compositions (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05). Structural analysis, using x‐ray diffraction (XRD) and Rietveld structural refinement, establishes that within the investigated composition range, no significant changes in the crystal structure are evident. The x‐ray photoelectron spectroscopy revealed the presence of oxygen vacancies as well as the stable oxidation state of different elements like O2−, Nb5+, Sm3+, and Li1+. At sintering temperature 1050°C, the average grain sizes vary approximately from 1.5 to 3.8 μm for different compositions with regular grain morphology. The UV‐Vis analysis reveals a noteworthy reduction in the band gap to 3.09 eV for the x = 0.01 composition. Photoluminescence studies exhibit distinct green, orange, and red bands, with the highest intensity observed for x = 0.01, showcasing promising optical properties. The dielectric permittivity of Sm‐substituted compositions surpasses the response of pure LiNbO3, demonstrating an increasing trend with temperature in the frequency range 100 Hz‐1 MHz intriguingly, no Curie temperature is observed up to 500°C for any composition. The polarization vs electric field hysteresis loop response highlights better polarization characteristics at the room temperature and maximum polarization is 0.66 μC/cm2 for the composition x = 0.05. The energy storage response of the developed compositions is investigated, which reveals a maximum efficiency of 46.64% for x = 0.04 in Li(1‐x)Sm(x/3)NbO3. The tunable optical properties, enhanced dielectric response, and notable energy efficiency of these high TC ceramics suggest their utility across diverse applications. These findings not only contribute to the understanding of functional ceramic materials but also pave the way for their optimized utilization in advanced technological applications, particularly in energy storage devices under nonambient conditions at high temperatures.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3