Hybrid Fuzzy Archimedes‐based Light GBM‐XGBoost model for distributed task scheduling in mobile edge computing

Author:

Kumaresan G.1ORCID,Devi K.1ORCID,Shanthi S.1ORCID,Muthusenthil B.1ORCID,Samydurai A.1ORCID

Affiliation:

1. Department of Computer Science and Engineering SRM Valliammai Engineering College Chennai India

Abstract

AbstractMobile edge computing (MEC) mainly offers strong computing capabilities and functions to finish the delay‐sensitive task in time with the help of 5G wireless networks. Task scheduling is a technique for managing the increasing number of mobile edge users, decreasing task execution time, and improving the system's load‐balancing capabilities. To achieve these goals, a distributed task scheduling system is developed in this research to satisfy multi‐objectives such as cost, total execution time, overhead, and energy consumption for large‐scale MEC tasks. First, a Hybrid Fuzzy Archimedes (HFA) algorithm is proposed to select the MEC node, which finishes the tasks with minimal cost and a higher security level. In the second step, the Hybrid LGBM and XGBoost architecture is formed to minimize the energy consumption and latency of each node for distributed task scheduling. The HFA algorithm modifies the search behavior of the Archimedes optimization algorithm using the fuzzy tendency factor and a normalized objective function. The HFA algorithm mainly selects the rule with an improved security value and lower cost for delay‐sensitive applications. The main aim of the hybrid LGBM‐XGBoost architecture is to minimize energy consumption and latency by taking the makespan and energy values. The efficiency of the proposed methodology is evaluated in terms of resource utilization, average completion time, completion rate, and Computation Workload Completion Rate. The proposed model offers a 20% improvement in average completion time and a 30% improvement in the energy consumption ratio. When 64 users are present in the system, the proposed model offers a CPU usage of 22% whereas MOCOSC, ADMM, and ANNIDS approaches offer CPU utilization of 62%, 78%, and 82%, respectively.

Publisher

Wiley

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3