Water transferable, customizable highly ordered honeycomb film from polystyrene foam waste for complex surface patterning in confined space

Author:

Le Thu Ha12,Chau Ngoc Mai12,Van Le Thang123,Hieu Nguyen Huu245,Bui Van‐Tien12ORCID

Affiliation:

1. Faculty of Materials Technology Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam

2. Vietnam National University Ho Chi Minh City Ho Chi Minh City Vietnam

3. VNU‐HCM Key Laboratory for Material Technologies Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam

4. Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam

5. VNU‐HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam

Abstract

AbstractThe disposal of plastic foam, mostly composed of polystyrene, poses significant environmental challenges due to its high popularity, slow degradation, and low cost. To address this problem, recycling polystyrene foam waste (PF) has emerged as a promising solution to reduce plastic pollution. This paper presents a novel approach to mass‐produce highly ordered, porous honeycomb‐patterned film (hc‐film) using wasted PF as the raw material. The hc‐film is produced using an improved phase separation (IPS) method that utilizes methanol as a suitable pore inducer and template droplet stabilizer. Methanol provides the hc‐film with customizable features such as pore ordering, size, and separation. The freestanding hc‐film, achieved by adopting a water‐soluble polystyrene sulfonate as a scarified layer, can be transferred and utilized as a flexible mold to pattern various solid substrates with complicated surface morphologies using the pre‐impregnated technique. This study demonstrates the potential of this cost‐effective and efficient approach for various applications, such as super/anti‐wetting surfaces, microelectronics, optical devices, sensors, and nanogenerators.

Funder

National Foundation for Science and Technology Development

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3