Microwave‐assisted synthesis, characterization, and application of tragacanth gum grafted copolymer as bioflocculant for the treatment of textile wastewater using coagulation‐flocculation technique: Swelling behavior and biodegradation studies

Author:

Shende Ashwini1ORCID,Chidambaram Ramalingam1ORCID

Affiliation:

1. Instrumental and Food Technology Laboratory School of Bio Sciences and Technology, VIT Vellore Tamil Nadu India

Abstract

AbstractThis study presents, the synthesis of microwave‐assisted biodegradable polyacrylamide grafted tragacanth gum (Tr‐g‐PAM), which was utilized as a bioflocculant to treat textile effluent and compared against the conventional flocculant. The reaction parameters for maximal grafting were optimized by varying the reaction factors. The grafting of acrylamide onto the backbone of Tragacanth gum was confirmed by FTIR, XRD, TGA, and SEM–EDX studies. Swelling studies were performed in deionized water and different salts. Tr‐g‐PAM exhibited pH and temperature‐dependent swelling behavior. Biodegradation studies of the graft copolymer were carried out by the soil composting method. Tr‐g‐PAM showed 91.54% degradation within 60 days, compared to Tragacanth, which degraded within 15 days. SEM techniques were used to describe various phases of biodegradation. Flocculation performances of the graft copolymers were evaluated in simulated colloidal wastewater. Influencing variables such as bioflocculant dosage, pH, and flocculation mixing speed were examined. The maximum decolorization at the optimum pH of 6 and 120 mg/L dosage was found to be 91.8% and 88.5% for Tr‐g‐PAM and Tragacanth. In conclusion, a biodegradable Tr‐g‐PAM with better flocculation efficiency than that of Tragacanth and other commercial flocculants would be a promising choice as an eco‐friendly adsorbent for the removal of contaminants from water resources.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3