Techno‐enviro‐economic design of small‐scale membrane‐based seawater desalination systems integrated with hybrid autonomous renewable power systems

Author:

Gökçek Murat1ORCID,Özkan Fatma12

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering Niğde Ömer Halisdemir University Niğde Turkey

2. Natural Gas and Installation Technologies Program, Electric and Energy Department, Vocational School of Technical Sciences Niğde Ömer Halisdemir University Niğde Turkey

Abstract

AbstractThis article aims to search the technical, environmental, and economic model of an off‐grid hybrid power generation system that supplies electricity to a seawater reverse osmosis (RO) system. Net present cost (NPC) and levelized cost of electricity (LCOE) values were used to determine the optimal system sizing powering a reverse osmosis desalination system for different sites where is located south and west coast of Türkiye. In the proposed power systems, PV panels, wind turbines, diesel generators, lead‐acid batteries, and converters were used. In the instance where the lowest LCOE of 0.301$/kWh is calculated, the optimal system comprises of a 25.7 kW PV array, one wind turbine (rated at 10 kW), 152 kWh LA batteries, and a 6.76 kW converter. The levelized cost of water (LCOW) value for this case was calculated as 1.168 $/m3. The LCOE value was calculated as 0.529 $/kWh for the power system, which is considered as a base case and consists of only a diesel generator, where no renewable energy source is used. For the base case, the carbon footprint of electricity generation is 35,127 kg/year. According to CO2 sequestration analysis result, the number of trees (Pinus Brutia) to be planted was calculated as approximately 164 tree/year over the lifetime of the power system for base case.

Publisher

Wiley

Subject

General Environmental Science,Waste Management and Disposal,Water Science and Technology,General Chemical Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3