Affiliation:
1. State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 P. R. China
2. College of Electronic and Optical Engineering and Microelectronics & College of Flexible Electronics (Future Technology) Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 P. R. China
Abstract
AbstractAchieving effective manipulation of emission color in photoresponsive materials is crucial for various advanced photonic applications. In this study, we designed and synthesized a hydrazone compound 1, ethyl (Z)‐2‐(2‐([2,2′:6′,2′′‐terpyridin]‐4′‐yl)hydrazineylidene)‐2‐(4‐(diphenylamino)phenyl)acetate, which possesses a push‐pull structure incorporating triphenylamine and terpyridine. The emission intensity of compound 1 can be repeatedly switched “off” and “on” by irradiation with visible light and UV light, which induces the isomerization transition between the Z and E forms. In addition, compound 1 is capable of changing its emission wavelength from 540 nm to 607 nm through coordination with different zinc salts in toluene/CH2Cl2 mixture (v : v=1 : 1). Importantly, we have successfully achieved dynamic manipulation of fluorescence color and intensity by altering the counterions of zinc complexes and switching the isomer from Z to E. Moreover, both compound 1 and its zinc complexes demonstrate remarkable photoswitchable properties with different fluorescence colors in the thin films. Finally, these films with various fluorescence colors were used for the production of luminescent tags.
Funder
National Natural Science Foundation of China
Subject
General Chemistry,Biochemistry,Organic Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献