Reaction Induced Conformational Change in Polyindole: Polyindole/PVA Film as Biomimetic Sensors of Temperature and Electrical Energetic Conditions

Author:

Rajan Lijin1,Shabeeba Aranhikundan1,Sidheekha Madari Palliyalil1,Ismail Yahya A.1ORCID

Affiliation:

1. Advanced Materials Research Center, Department of Chemistry University of Calicut Thenhipalam Kerala 673635 India) E-mail

Abstract

AbstractConducting polymers can mimic the sensing characteristics of biological muscles through utilizing their unique electrochemical reactions. As these reactions occur, alterations in composition prompt changes in biomimetic properties, such as shifts in volume, brought about by the insertion of anions and solvent molecules, resulting in conformational movements. Similar to biological muscles, these electrochemical reaction senses the working variables affecting the reaction rate, through the same two connecting wires. The influence of working temperature and electrical energetic condition on the conformational movements of polyindole manifested as the cooperative actuation of the polymer chain is verified here using a polyindole‐coated polyvinyl alcohol (PIN/PVA) film. Cyclic voltammetric (CV) studies revealed that the extent of reaction of polyindole varies linearly with temperature and scan rate. The logarithmic dependence of redox charge obtained from coulovoltammogram with inverse of temperature further proved the temperature sensing characteristics and the influence of temperature on the cooperative actuation of the film. The conformational relaxation increases as the temperature increases through hosting higher number of counter anions with the solvent molecule. The extension of the redox reaction was found to decrease as the scan rate increases. The double logarithmic relation between the consumed redox charge and the scan rate has proved that the electrical energetic condition can influence the conformational movement in a reversible manner. It is also verified from Chronopotentiometric (CP) studies that the consumed electrical energy during the reaction varies linearly with the change in temperature. The results suggest that the PIN/PVA film can act as a biomimetic macro molecular sensor of working temperature and electrical energetic condition as biological muscles do.

Publisher

Wiley

Subject

General Chemistry,Biochemistry,Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3