TMSCl Promoted Direct Conversion of Cyclic Anhydrides to (Un)Symmetric‐Diesters/Amide Esters

Author:

Johny Meera1ORCID,Manikandan Amuda1,Rajendar Goreti1ORCID

Affiliation:

1. School of Chemistry Indian Institute of Science Education and Research 695551 Thiruvananthapuram Kerala India

Abstract

AbstractWe present a mild, efficient, and one‐pot method for the silyl‐promoted transformation of cyclic anhydrides into homo‐ and hetero‐dicarboxylic acid diesters and amide esters. This versatile reaction operates under ambient conditions, on a gram scale, and accommodates a wide range of alcohols, amines, and cyclic anhydrides. The one‐pot process involves a two‐step sequence, starting with the nucleophilic opening of anhydride by an amine or alcohol, followed by esterification. TMSCl serves a dual role, acting as a sacrificial reagent to remove in situ water and as a Lewis acid to promote the anhydride opening. The reaction proceeds successfully in the absence and presence of a base, as confirmed by NMR and crossover experiments, which validated the formation of dicarboxylic acid monoester and alkyl silyl mixed diester respectively. Controlled experiments have shown that the one‐pot process yields higher efficiencies when compared to the same reaction conducted using a two‐step process. This is the first comprehensive study demonstrating a broad substrate scope for the conversion of cyclic anhydride into diesters and amide esters. The method finds application in the synthesis of various commercial plasticizers.

Publisher

Wiley

Subject

General Chemistry,Biochemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3