A Review on Low‐Molecular‐Weight Gels Driven by Halogen‐Effect

Author:

Zhang Yuping1,Wang Jing2,Liao Yonggui1ORCID,Xie Xiaolin1

Affiliation:

1. Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials School of Chemistry and Chemical Engineering Huazhong University of Science and Technology 430074 Wuhan China

2. National Engineering Research Center for Carbohydrate Synthesis Jiangxi Normal University 330022 Nanchang China

Abstract

AbstractAs a new type of non‐covalent interaction similar to hydrogen bond, halogen bond has become an important supramolecular tool in crystal engineering, material chemistry, biological science, etc., due to its unique properties. In fact, halogen bond has been confirmed on the effect of molecular assemblies and soft materials, and widely used in various functional soft materials including liquid crystals, gels and polymers. In recent years, halogen bonding has aroused strong interest in inducing molecular assembly into low‐molecular‐weight gels (LMWGs). To the best of our knowledge, there is still a lack of in‐depth review of this field. So, in this paper, the recent progress of LMWGs driven by halogen bonding is reviewed. According to the number of components forming halogen bonded gels, the structural characteristics of halogen bonded supramolecular gels, the relationship between halogen bonding and other non‐covalent interactions, as well as the application fields of halogen bonded gels are introduced, respectively. In addition, the challenges faced by halogenated supramolecular gels at present and their development prospects in future have been proposed. We believe that the halogen bonded gel will have more impressive applications in the next few years, opening exciting new opportunities for the development of soft materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Biochemistry,Organic Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3