Identification of Suitable Mesh Size of Commercial Stainless‐Steel for Electrochemical Oxygen Evolution Reaction

Author:

Hardianto Yuda Prima12,Aziz Md. Abdul2ORCID,Mohamed Mostafa M.12,Yamani Zain H.12

Affiliation:

1. Physics Department King Fahd University of Petroleum & Minerals KFUPM Box 5047 Dhahran 31261 Saudi Arabia

2. Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM) King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia

Abstract

AbstractThe study examines the oxygen evolution reaction (OER) electrocatalytic efficiency of various stainless‐steel mesh (SSM) sizes in electrolytic cells. Stainless steel is chosen due to its widespread availability and stability, making it an economically viable option. The primary objective of this investigation is to determine the optimal stainless‐steel mesh size among those currently widely available on the market. The classification of stainless‐steel mesh sizes as SS304 is confirmed by the minimal compositional variations observed across all mesh sizes through electron dispersive X‐ray (EDX) spectra and X‐ray fluorescence (XRF) analyses. Remarkably, CV experiments carried out at different scan rates indicate that SSM 200 has the maximum specific electrochemical surface area (ECSA). As a result, SSM 200 demonstrates superior performance in terms of current density response and shows the lowest overpotential in the alkaline medium compared to other stainless‐steel mesh sizes. Furthermore, the SSM 200 exhibits a low overpotential of 337 mV at a current density of 10 mA/cm2 and a Tafel slope of 62.2 mV/decade, surpassing the performance of several previously reported electrodes for the OER. Stability tests conducted under constant voltage further confirm the remarkable stability of SSM 200, making it an ideal anode for electrolytic cell applications. These findings emphasize the cost‐effectiveness and high stability of SSM 200, presenting intriguing possibilities for future research and advancements in this field.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3