Recent Development of Physical Hydrogen Storage: Insights into Global Outlook and Future Applications

Author:

Ali Lashari Zeeshan1,Haq Bashirul2ORCID,Al‐Shehri Dhafer2,Zaman Ehsan3,Al‐Ahmed Amir4,Lashari Najeebullah1

Affiliation:

1. Department of Petroleum and Gas Engineering Dawood University of Engineering & Technology 74800 Karachi Pakistan

2. Department of Petroleum Engineering King Fahd University of Petroleum and Minerals (KFUPM) 31261 Dhahran Saudi Arabia

3. BOC Limited 57-61 Baile Road,Canning Vale WA 6155 Australia

4. Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS) King Fahd University of Petroleum & Minerals 31231 Dhahran Saudi Arabia

Abstract

AbstractTransition of global energy market towards an environment‐friendly sustainable society requires a profound transformation from fossil fuel to zero carbon emission fuel. To cope with this goal production ofrenewable energy is accelerating worldwide. Research in renewable energy from production and storage to practical utilization requires an organized approach. One of the best renewable energy carrier is the hydrogen, due to its clean combustion and abundance. Nonetheless, its storage is a critical challenge to its success. Hydrogen must be stored long after being produced and transported to a storage site. Physical hydrogen storage is vital among hydrogen storage modes, and its shortcoming needs to overcome for its successful and economic benefits. This review intends to discuss the techniques and applications of physical hydrogen storage in the state of compressed gas, liquefied hydrogen gas, and cold/cryo compressed gas concerning their working principle, chemical and physical properties, influencing factors for physical hydrogen storage, and transportation, economics, and global outlook. Insights of several probable physical hydrogen storage (PHS) systems are highlighted. The outcomes of this review envisioned that the PHS still necessitates technological advancements despite having remarkable success. The Liquid Hydrogen Gas storage marks better sustainability than Compressed and Cryo Compressed Gas. The physical hydrogen storage method can store hydrogen in tanks in any state (liquid or gas) under 20 K for the liquid state and ambient temperature for the gaseous state The Bibliographic analysis depicts that the research in hydrogen rising with time and mostly the research in conducted in USA with 231 articles. Prospects and challenges with lessons learned and the limitation opens the door to further research, which would be helpful for efficient and long‐term physical hydrogen storage.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive review on the role of hydrogen in renewable energy systems;International Journal of Hydrogen Energy;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3