MolNet_Equi: A Chemically Intuitive, Rotation‐Equivariant Graph Neural Network

Author:

Kim Jihoo1,Jeong Yoonho1,Kim Won June2,Lee Eok Kyun1,Choi Insung S.1ORCID

Affiliation:

1. Department of Chemistry KAIST Daejeon 34141 Korea

2. Department of Biology and Chemistry Changwon National University Changwon 51140 Korea

Abstract

AbstractAlthough deep‐learning (DL) models suggest unprecedented prediction capabilities in tackling various chemical problems, their demonstrated tasks have so far been limited to the scalar properties including the magnitude of vectorial properties, such as molecular dipole moments. A rotation‐equivariant MolNet_Equi model, proposed in this paper, understands and recognizes the molecular rotation in the 3D Euclidean space, and exhibits the ability to predict directional dipole moments in the rotation‐sensitive mode, as well as showing superior performance for the prediction of scalar properties. Three consecutive operations of molecular rotation , dipole‐moment prediction , and dipole‐moment inverse‐rotation do not alter the original prediction of the total dipole moment of a molecule , assuring the rotational equivariance of MolNet_Equi. Furthermore, MolNet_Equi faithfully predicts the absolute direction of dipole moments given molecular poses, albeit the model has been trained only with the information on dipole‐moment magnitudes, not directions. This work highlights the potential of incorporating fundamental yet crucial chemical rules and concepts into DL models, leading to the development of chemically intuitive models.

Publisher

Wiley

Subject

General Chemistry,Biochemistry,Organic Chemistry

Reference35 articles.

1. Molecular graph convolutions: moving beyond fingerprints

2. J. Gilmer S. S. Schoenholz P. F. Riley O. Vinyals G. E. Dahl Proceedings of the 34th International Conference on Machine Learning Vol 70 2017 pp. 1263–1272.

3. Analyzing Learned Molecular Representations for Property Prediction

4. Molecule Property Prediction Based on Spatial Graph Embedding

5. Co‐crystal Prediction by Artificial Neural Networks**

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3