Thermal‐Responsive Liquid Crystal Elastomer Foam‐based Compressible and Omnidirectional Gripper

Author:

Zhang Xinyuhang1,Liao Wei1,Wang Yunpeng1,Yang Zhongqiang12ORCID

Affiliation:

1. Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University 100084 Beijing P. R. China

2. Laboratory of Flexible Electronics Technology Tsinghua University 100084 Beijing P. R. China

Abstract

AbstractLiquid crystal elastomers (LCEs) are considered to be a promising material for the fabrication of soft grippers because of their large and reversible deformations, an LCE gripper with suitable compressibility and omnidirectionality has not yet been developed. To overcome these obstacles, this study utilizes salt template method to fabricate a rod‐like LCE foam as gripper. The thickness of the compressible foam can be reduced by up to 77%, temporarily maintaining the deformation and enabling the gripper to pass through slits. The foam was aligned along the long axis and the length of the foam exhibits reversible thermal responsiveness and contract up to 57% along its alignment. Additionally, when the foam approaches a heat source, the generated temperature gradient results in a contraction gradient owing to the low thermal conductivity of the LCE foam. This in turn causes the foam to reversibly bend with a bending angle up to 93° and follow the movement of a heat source omnidirectionally. The developed gripper successfully grasps, moves, and releases hot objects in a cold and safe place, demonstrating its potential for emergency disposal. Thus, LCE foams can be considered suitable materials for novel gripper design and construction.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Biochemistry,Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent Advances on Underwater Soft Robots;Advanced Intelligent Systems;2023-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3