Affiliation:
1. Department of Chemistry School of Natural Sciences National University of Sciences and Technology Islamabad 44000 Pakistan
2. Department of Chemistry Government College University Katchery Road Lahore 54000 Pakistan
3. Department of Mechanical Engineering College of Engineering King Saud University Riyadh 11421 Saudi Arabia
4. Energy and Process Engineering Laboratory School of Mechanical Medical and Process Engineering Faculty of Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
Abstract
AbstractEnhanced electrocatalysts that are cost‐effective, durable, and derived from abundant resources are imperative for developing efficient and sustainable electrochemical water–splitting systems to produce hydrogen. Therefore, the design and development of non–noble–based catalysts with more environmentally sustainable alternatives in efficient alkaline electrolyzers are important. This work reports ferrocene (Fc)‐incorporated nickel sulfide nanostructured electrocatalysts (Fc−NiS) using a one–step facile solvothermal method for water–splitting reactions. Fc−NiS exhibited exceptional electrocatalytic activity under highly alkaline conditions, evident from its peak current density of 345 mA cm−2, surpassing the 153 mA cm−2 achieved by the pristine nickel sulfide (NiS) catalysts. Introducing ferrocene enhances electrical conductivity and facilitates charge transfer during water–splitting reactions, owing to the inclusion of iron metal. Fc−NiS exhibits a very small overpotential of 290 mV at 10 mA cm−2 and a Tafel slope of 50.46 mV dec−1, indicating its superior charge transfer characteristics for the three–electron transfer process involved in water splitting. This outstanding electrocatalytic performance is due to the synergistic effects embedded within the nanoscale architecture of Fc−NiS. Furthermore, the Fc−NiS catalyst also shows a stable response for the water–splitting reactions. It maintains a steady current density with an 87% retention rate for 25 hours of continuous operation, indicating its robustness and potential for prolonged electrolysis processes.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献