MXenes and MXene‐Based Metal Hydrides for Solid‐State Hydrogen Storage: A Review

Author:

ur Rehman Ata1ORCID,Akram Khan Safyan1ORCID,Mansha Muhammad1ORCID,Iqbal Shahid2ORCID,Khan Majad3ORCID,Mustansar Abbas Syed14ORCID,Ali Shahid1ORCID

Affiliation:

1. Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia

2. Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute University of Nottingham Ningbo China Ningbo 315100 China

3. Department of Chemistry King Fahd University of Petroleum and Minerals 31261 Dhahran Saudi Arabia

4. Nanoscience and Technology Department National Center for Physics Islamabad 45320 Pakistan

Abstract

AbstractHydrogen‐driven energy is fascinating among the everlasting energy sources, particularly for stationary and onboard transportation applications. Efficient hydrogen storage presents a key challenge to accomplishing the sustainability goals of hydrogen economy. In this regard, solid‐state hydrogen storage in nanomaterials, either physically or chemically adsorbed, has been considered a safe path to establishing sustainability goals. Though metal hydrides have been extensively explored, they fail to comply with the set targets for practical utilization. Recently, MXenes, both in bare form and hybrid state with metal hydrides, have proven their flair in ascertaining the hydrides′ theoretical and experimental hydrogen storage capabilities far beyond the fancy materials and current state‐of‐the‐art technologies. This review encompasses the significant accomplishments achieved by MXenes (primarily in 2019–2024) for enhancing the hydrogen storage performance of various metal hydride materials such as MgH2, AlH3, Mg(BH4)2, LiBH4, alanates, and composite hydrides. It also discusses the bottlenecks of metal hydrides for hydrogen storage, the potential use of MXenes hybrids, and their challenges, such as reversibility, H2 losses, slow kinetics, and thermodynamic barriers. Finally, it concludes with a detailed roadmap and recommendations for mechanistic‐driven future studies propelling toward a breakthrough in solid material‐driven hydrogen storage using cost‐effective, efficient, and long‐lasting solutions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3