Affiliation:
1. Department of Chemistry Indian Institute of Technology Bhilai Raipur 492015 Chattisgarh India
2. Institut de Química Computacional i Catalisì (IQCC) and Departament de Química Universitat de Girona Girona E-17003 Catalonia Spain
3. Department of Chemistry North Eastern Hill University Shillong 793022 India
Abstract
AbstractThe fixation of atmospheric CO2 into value‐added products is a promising methodology. A series of novel nickel(II) complexes of the type [Ni(L)(CH3CN)2](BPh4)2 1–5, where L=N,N‐bis(2‐pyridylmethyl)‐N′, N′‐dimethylpropane‐1,3‐diamine (L1), N,N‐dimethyl‐N′‐(2‐(pyridin‐2‐yl)ethyl)‐N′‐(pyridin‐2‐ylmethyl) propane‐1,3‐diamine (L2), N,N‐bis((4‐methoxy‐3,5‐dimethylpyridin‐2‐ylmethyl)‐N′,N′‐dimethylpropane‐1,3‐diamine (L3), N‐(2‐(dimethylamino) benzyl)‐N′,N′‐dimethyl‐N‐(pyridin‐2‐ylmethyl) propane‐1,3‐diamine (L4) and N,N‐bis(2‐(dimethylamino)benzyl)‐N′, N′‐dimethylpropane‐1,3‐diamine (L5) have been synthesized and characterized as the catalysts for the conversion of atmospheric CO2 into organic cyclic carbonates. The single‐crystal X‐ray structure of 2 was determined and exhibited distorted octahedral coordination geometry with cis‐α configuration. The complexes have been used as a catalyst for converting CO2 and epoxides into five‐membered cyclic carbonates under 1 atmospheric (atm) pressure at room temperature in the presence of Bu4NBr. The catalyst containing electron‐releasing −Me and ‐OMe groups afforded the maximum yield of cyclic carbonates, 34% (TON, 680) under 1 atm air. It was drastically enhanced to 89% (TON, 1780) under pure CO2 gas at 1 atm. It is the highest catalytic efficiency known for CO2 fixation using nickel‐based catalysts at room temperature and 1 atm pressure. The electronic and steric factors of the ligands strongly influence the catalytic efficiency. Furthermore, all the catalysts can convert a wide range of epoxides (ten examples) into corresponding cyclic carbonate with excellent selectivity (>99%) under this mild condition.
Funder
Science and Engineering Research Board
Subject
General Chemistry,Biochemistry,Organic Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献