On the Existence of Pnictogen Bonding Interactions in As(III) S‐Adenosylmethionine Methyltransferase Enzymes

Author:

Gomila Rosa M.1ORCID,Frontera Antonio1ORCID

Affiliation:

1. Department of Chemistry Universitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca (Baleares) Spain

Abstract

AbstractAs(III) S‐adenosylmethionine methyltransferases, pivotal enzymes in arsenic metabolism, facilitate the methylation of arsenic up to three times. This process predominantly yields trivalent mono‐ and dimethylarsenite, with trimethylarsine forming in smaller amounts. While this enzyme acts as a detoxifier in microbial systems by altering As(III), in humans, it paradoxically generates more toxic and potentially carcinogenic methylated arsenic species. The strong affinity of As(III) for cysteine residues, forming As(III)‐thiolate bonds, is exploited in medical treatments, notably in arsenic trioxide (Trisenox®), an FDA‐approved drug for leukemia. The effectiveness of this drug is partly due to its interaction with cysteine residues, leading to the breakdown of key oncogenic fusion proteins. In this study, we extend the understanding of As(III)′s binding mechanisms, showing that, in addition to As(III)−S covalent bonds, noncovalent O⋅⋅⋅As pnictogen bonding plays a vital role. This interaction significantly contributes to the structural stability of the As(III) complexes. Our crystallographic analysis using the PDB database of As(III) S‐adenosylmethionine methyltransferases, augmented by comprehensive theoretical studies including molecular electrostatic potential (MEP), quantum theory of atoms in molecules (QTAIM), and natural bond orbital (NBO) analysis, emphasizes the critical role of pnictogen bonding in these systems. We also undertake a detailed evaluation of the energy characteristics of these pnictogen bonds using various theoretical models. To our knowledge, this is the first time pnictogen bonds in As(III) derivatives have been reported in biological systems, marking a significant advancement in our understanding of arsenic‘s molecular interactions.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3