Modulation of the Structure‐function Relationship of the “nano‐greenhouse effect” towards Optimized Supra‐photothermal Catalysis

Author:

Zhong Biqing1,Cai Mujin1,Liu Shuang1,He Jiari1,Wang Jiaqi1,Feng Kai11,Tolstoy Valeri P.2ORCID,Jiang Lin13,Li Chaoran13,An Xingda11,He Le11ORCID

Affiliation:

1. Jiangsu Key Laboratory of Advanced Negative Carbon Technologies Institute of Functional Nano & Soft Materials Soochow University Suzhou 215123 Jiangsu

2. Saint-Petersburg State University Institute of Chemistry Saint Petersburg State University St. Petersburg 199034 Russia

3. Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Institute of Functional Nano & Soft Materials Soochow University Suzhou 215123 Jiangsu

Abstract

AbstractPhotothermal catalytic CO2 hydrogenation holds great promise for relieving the global environment and energy crises. The “nano‐greenhouse effect” has been recognized as a crucial strategy for improving the heat management capabilities of a photothermal catalyst by ameliorating the convective and radiative heat losses. Yet it remains unclear to what degree the respective heat transfer and mass transport efficiencies depend on the specific structures. Herein, the structure‐function relationship of the “nano‐greenhouse effect” was investigated and optimized in a prototypical Ni@SiO2 core‐shell catalyst towards photothermal CO2 catalysis. Experimental and theoretical results indicate that modulation of the thickness and porosity of the SiO2 nanoshell leads to variations in both heat preservation and mass transport properties. This work deepens the understandings on the contributing factor of the “nano‐greenhouse effect” towards enhanced photothermal conversion. It also provides insights on the design principles of an ideal photothermal catalyst in balancing heat management and mass transport processes.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

General Chemistry,Biochemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3