Click Chemistry for the Generation of Combination of Triazole Core and Thioether Donor Site in Organosulfur Ligands: Applications of Metal Complexes in Catalysis

Author:

Bhatt Neeraj1ORCID,Tyagi Anupma1ORCID,Purohit Suraj1ORCID,Kumar Arun1ORCID

Affiliation:

1. Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India

Abstract

AbstractDuring the last two decades, organosulfur compounds have been used in the field of transition metal catalysis. Some of such compounds are known for their ability to withstand their exposure to air and moisture. These compounds are very important ligands. They may be obtained using simple and smooth modular synthetic protocols which include nucleophilic substitution reactions. The development of click chemistry represents a new era of innovation. It is a lighthouse of reliable and efficient reactions. In recent past, click chemistry has also been applied for the synthesis of such organosulfur ligands specifically suited for the dynamic field of transition metal catalysis. In order to synthesize novel compounds containing sulfur and triazole ring, click chemistry is an advantageous methodology over other approaches. This article covers the general features and uses of this methodology for the development of catalytically active organosulfur compounds. The significant advances in the design of transition metal catalytic systems utilizing such ligands, their use in the catalysis of many chemical transformations are also covered in this article. Effort has also been made to present a comparative overview of the performances of such catalysts vis‐à‐vis the catalysts designed commonly used ligands. Catalytic performances have been discussed thoroughly in order to identify the impact of ligand architecture on efficacy of the catalyst. Effect of reaction conditions (such as time, temperature etc.) and mechanistic aspects have also been rationalized.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3