Reconstruction of Metal Ions Extracted from Coal Gangue to Synthesize Cost‐effective Adsorbent for Highly Efficient Removal of Pollutants

Author:

Zhao Wen‐ting1,Zhang Huan1,Feng Ke1,Wang Tian‐yang1,Han Lei1,Xing Hai‐feng2,Huang Fei1,Wang Wen‐bo1ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021 P. R. China

2. College of Grassland Resources and Environment Inner Mongolia Agricultural University Hohhot 010010 P. R.China

Abstract

AbstractAn emerging “one stone, three birds” strategy was proposed to realize the value‐added disposal of solid waste coal gangue (CG), the synthesis of superb adsorbent and the efficient decontamination of pollutants (i. e., dyes, heavy metals). In this process, the metal ions extrated from calcined coal gangue (CCG) was reconstituted by a one‐step hydrothermal process to yield porous polymetallic silicate adsorbent (named HECCGA8h). The adsorbent has a high adsorption capacity of 270.27 and 185.53 mg/g for methylene blue (MB) and Cd(II), respectively. In the actual waters, the removal rate of MB by this adsorbent reaches 99.8% (in Yangtze River water) and 99.42% (in Seawater), and the removal rate of Cd(II) reaches 99.11% (in Yangtze River water) and 92.52% (in Seawater), respectively. Thermokinetic analysis showed that the adsorption of MB by HECCGA8h is spontaneous and endothermic with increased entropy, and the adsorption of Cd(II) is spontaneous and exothermic. The adsorption of MB is mainly driven by synergism of hydrogen bond, electrostatic attraction and ion exchange, and the adsorption of Cd(II) is mainly driven by the complexation and ion exchange between the surface group of the adsorbent and Cd(II). This research provides a new way for the realization of “treating waste with waste”.

Funder

National Natural Science Foundation of China

Inner Mongolia University

Publisher

Wiley

Subject

General Chemistry,Biochemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3