Long‐Term Comparisons of Photoluminescence Affected by Organic Cations of Formamidinium and Methylammonium in Monophasic Lead Iodide Perovskite Quantum Dots

Author:

Heo Jaeseong1ORCID,Kim Hyewon1ORCID,Park Jiyeong1ORCID,Sasongko Nurwarrohman Andre1ORCID,Jeong Mincheol1,Han Jaeeun1,Seo Taeji1,Ji Yujeong1,Han Jiyoung1,Park Myeongkee1ORCID

Affiliation:

1. BB21 Plus Program Department of Chemistry Pukyong National University Busan 48513 Republic of Korea

Abstract

AbstractThis study compared the photoluminescence (PL) stabilities of formamidinium (FA) and methylammonium (MA) in lead iodide perovskite quantum dots (QDs). To exclude other factors, such as size and purity, that may affect stability, MAPbI3 and FAPbI3 QDs with nearly identical sizes (~10.0 nm) were synthesized by controlling the ligand concentration and synthesis temperature. Transmission electron microscopy images and X‐ray diffraction patterns confirmed homogeneous single‐phase perovskite structures. Additionally, the bandgaps and sizes of the synthesized QDs closely matched those of the infinite quantum well model, which guaranteed that the photostability was solely caused by the different organic molecules in the two QDs. We analyzed the PL peak centers and full‐width at half maximum of the QDs for 32 days. The enhanced stability of FAPbI3 was found to be caused by the nearly zero redshift (1.615 eV) of its PL peak, in contrast to the redshift (1.685→1.670 eV) of MAPbI3.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3