Retrieval of parameters in micromixer with obstacle by cascade‐forward‐type artificial neural network: Comparison of four training algorithms under noisy data

Author:

Acharya Swagatika1,Mishra Vijay Kumar1ORCID,Patel Jitendra Kumar1,Chaudhuri Sumanta1

Affiliation:

1. School of Mechanical Engineering KIIT DU Bhubaneswar India

Abstract

AbstractTwo parameters are retrieved in a passive Y‐type micromixer with circular obstacle by cascade‐forward‐type artificial neural network (CFANN). The governing equations are solved by the finite volume method, under specific boundary conditions. The numerical model is then used to compute velocity profile and mixing efficiency, for different values of the Reynolds number. Thus, the velocity profiles along with Reynolds number (Re) and mixing efficiency (η) constitute the input–output pair of data. These data are used to train CFANN, and the network is monitored through different means, like, histograms, performance curves, and so forth. For inverse analysis, the trained CFANN model is fed with a new velocity profile as input, and corresponding values of Reynolds number and mixing efficiency are obtained as output. In an attempt to construct the optimum CFANN model, various combinations were explored, like, (1) different numbers of neurons in the hidden layer, (2) different noise levels in input data, and (3) different algorithms in the training stage. Finally, the CFANN with 10 hidden layer neurons with Levenberg–Marquardt (LM) algorithm was found to give retrieved values with up to 0.96% absolute error for all levels of noise in the input data. Also, the CFANN model with the LM algorithm has a very high value of regression coefficient of greater than 0.998, under all the noise values. Scaled conjugate gradient algorithm gives good results for the no‐noise case, but fails poorly with the rise of noise. Other algorithms, like, Bayesian regularization and resilient backpropagation, perform poorly even in the no‐noise case. The present approach is highly simple, accurate, and time efficient for applying inverse analysis in micromixers.

Publisher

Wiley

Subject

Fluid Flow and Transfer Processes,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3