Machine vision‐based automated earthquake‐induced drift ratio quantification for reinforced concrete columns

Author:

Hamidia Mohammadjavad1ORCID,Jamshidian Sara1ORCID,Afzali Mobinasadat1ORCID,Safi Mohammad1ORCID

Affiliation:

1. Faculty of Civil, Water and Environmental Engineering Shahid Beheshti University Tehran Iran

Abstract

SummaryThis paper presents a novel method for estimating the seismic peak interstory drift ratio (IDR) in reinforced concrete (RC) columns after an earthquake using surface crack image analysis. The quantitative representation of the complexity and irregularity of crack images in damaged RC columns is obtained through the consideration of the generalized fractal dimensions. The authors have compiled a comprehensive database consisting of 445 crack maps obtained from cyclic experiments conducted on 110 rectangular RC column specimens exhibiting double‐curvature deformation mode. This database is utilized by the authors to develop and validate the proposed procedure. The research database contains a wide range of structural and geometric features. Five closed‐form equations are developed with the objective of estimating the peak IDR experienced by the RC columns during a seismic event. The predictive equations are derived through the utilization of symbolic regression technique, with the input parameters varying according to the availability of columns characteristic parameters. Results reveal that generalized fractal dimensions, especially D−1, are strong vision‐based indicator of damage in RC columns having correlation coefficients with IDR ranging from 0.82 to 0.92 across the considered plans. The seismic peak IDR obtained through the empirical equations can serve as the input engineering demand parameter (EDP) in the seismic loss estimation frameworks. This allows for the determination of the probability of exceeding damage states for structural and nonstructural components of concrete buildings. Finally, the practical implementation of the methodology is examined by its application to an actual case of a damaged column during the Kermanshah earthquake of magnitude 7.3 that occurred in 2017.

Publisher

Wiley

Subject

Building and Construction,Architecture,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3