Enhancing heat transfer with a synthetic jet for thermal management applications

Author:

Shaker Sufian F.1ORCID

Affiliation:

1. Renewable Energy Research Centre University of Anbar Ramadi Iraq

Abstract

AbstractThis article explores the utilization of a synthetic jet as an approach to cool microelectronic devices, addressing their thermal management needs. The study includes both experimental measurements and numerical simulations to gain a comprehensive understanding of the heat transfer characteristics and fluid flow patterns generated by the synthetic jet actuator. The average Nusselt number (Nu) of the synthetic jet impinging flow with the dimensionless separation distances of the orifice to the heated surface (H/D) is investigated at different Reynolds numbers. A dynamic mesh scheme is employed in performing the simulations of the fluid domain to showcase the diaphragm's vibration and its deformation over time. The velocity profiles exhibit that the synthetic jet flow prompts the formation of two countervortices during every vibrating cycle of the diaphragm. The experimental results align closely with the predicted outcomes, indicating that the synthetic jet significantly enhances heat transfer by 3.1 times relative to the natural convection in the case of (H/D = 8.4) across different Reynolds numbers while maintaining low power consumption, a compact size, and a noise‐free operation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3