Numerical investigation of free convection inside square wavy enclosure using response surface methodology

Author:

Fadhil Ahmed A.1,Azzawi Itimad D. J.1,Yahya Samir Gh1,Khadom Anees A.2ORCID,Al‐Rubaye Layth Abed Hasnawi1

Affiliation:

1. Department of Mechanical Engineering, College of Engineering University of Diyala Baqubah Iraq

2. Department of Chemical Engineering, College of Engineering University of Diyala Baqubah Iraq

Abstract

AbstractFree convection is commonly applied in various engineering fields such as solar energy, electronic devices, nuclear energy, and heat exchangers. A computational simulation was used to analyze the natural heat transfer through convection in a wavy cavity with squared shape that was filled with tap water and saturated metal foam to assess the influence of hump configuration (square, triangle, circular, down semicircular, and up semicircular) and magnetic fields (magnetohydrodynamics) on heat transfer rate. The bottom wavy wall of the enclosure exhibits a high temperature (Th), whereas the top and side walls maintain a low temperature (Tc). The present paper will examine how the bottom wall hump number (N), aspect ratio (L), geometry inclination angle (θ), Hartman number (Ha), magnetic field intensity inclination angle (ɤ) affects the heat transfer rate at various Rayleigh numbers. When the circular hump design is used with specific parameters, including ɛ = 0.85, L = 1.25, N = 4, Tc = 0°C, θ = 0°, Ha = 600 and ɤ = 45°, for different Ra values, it leads to increased heat transfer and notable improvements in heat transfer enhancement (ɸ) and energy enhancement (e). The enhancements were measured at 2.5 times for heat transfer enhancement and 8.9 times for energy enhancement. Moreover, the ideal case of the current study had Ha = 600, L = 1.25, Ra = 30 × 103, and θ = 0° compared to the baseline case. Simulations were accomplished using CFD. The results demonstrate that the primary goal of the research was achieved by optimizing the design, leading to a significant improvement in hydrothermal performance for both ɸ = 2.5 and e = 8.9.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3