Ameliorating saline‐sodic soils: A global meta‐analysis of field studies on the influence of exogenous amendments on crop yield

Author:

Wang Xiao12ORCID,Ding Jianli12,Wang Jinjie12,Han Lijing12,Tan Jiao12,Ge Xiangyu12ORCID

Affiliation:

1. College of Geography and Remote Sensing Sciences Xinjiang University Urumqi China

2. Xinjiang Key Laboratory of Oasis Ecology Xinjiang University Urumqi China

Abstract

AbstractAs the demand for food continues to rise, soil salinization and sodification pose an increasingly pressing challenge. Currently, there is a knowledge gap regarding how to effectively improve saline‐sodic soils to support sustainable agricultural production, especially the lack of systematic analysis on the effects of different amendments at a global scale. To address this gap, this study aims to explore the feasibility of using exogenous amendments to ameliorate saline‐sodic soils, conducting a global‐scale meta‐analysis based on 685 data pairs from 70 published studies. Our results showed that applying amendments to saline‐sodic soils significantly reduced electrical conductivity of saturated paste extract (ECe) by 33.0% and exchangeable sodium percentage (ESP) by 44.6%, while simultaneously increasing crop yield by 50.7%. Heterogeneity analysis further unveiled significant variations (p < 0.05) in the overall effect size, driven by factors such as initial soil properties (salinity and ESP levels), amendment type, climate and practical management conditions (application dose and experimental duration). The categorical variable analysis showed that, compared to soils with other salinization levels, the application of amendments in severe salinization soils was most effective in reducing soil ECe and enhancing crop yield. Considering the goals of mitigating soil salinity, sodicity, and increasing crop yield, the study suggests the application of mixed‐type amendments in practical settings. It is noteworthy that while extremely high doses (greater than 40 t ha−1) effectively increased crop yield, they also posed a risk of salt accumulation. In conclusion, this research offers critical insights for sustainable agriculture, guiding future work on soil health and food security in the context of global environmental challenges.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3