A double‐layer crowd evacuation simulation method based on deep reinforcement learning

Author:

Zhang Yong1ORCID,Yang Bo12,Zhu Jianlin12

Affiliation:

1. College of Computer Science South‐Central Minzu University Wuhan China

2. Key Laboratory of Cyber‐Physical Fusion and Intelligent Computing South‐Central Minzu University, State Ethnic Affairs Commission Wuhan China

Abstract

AbstractExisting crowd evacuation simulation methods commonly face challenges of low efficiency in path planning and insufficient realism in pedestrian movement during the evacuation process. In this study, we propose a novel crowd evacuation path planning approach based on the learning curve–deep deterministic policy gradient (LC‐DDPG) algorithm. The algorithm incorporates dynamic experience pool and a priority experience sampling strategy, enhancing convergence speed and achieving higher average rewards, thus efficiently enabling global path planning. Building upon this foundation, we introduce a double‐layer method for crowd evacuation using deep reinforcement learning. Specifically, within each group, individuals are categorized into leaders and followers. At the top layer, we employ the LC‐DDPG algorithm to perform global path planning for the leaders. Simultaneously, at the bottom layer, an enhanced social force model guides the followers to avoid obstacles and follow the leaders during evacuation. We implemented a crowd evacuation simulation platform. Experimental results show that our proposed method has high path planning efficiency and can generate more realistic pedestrian trajectories in different scenarios and crowd sizes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3