Combined recovery of valuable metals from LiFePO4LiCoO2 system without adding oxidant and reductant

Author:

Ren Zhongqi1ORCID,Zheng Shuai1,Li Ruiqi1,Li Yongjian1,Dong Liping1,Wu Xi2,Tian Shichao1,Zhou Zhiyong1

Affiliation:

1. State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China

2. Sub‐Institute of Agriculture and Food Standardization China National Institute of Standardization Beijing China

Abstract

AbstractBased on the oxidation of ferrous ions in lithium iron phosphate and reduction of trivalent cobalt ions in lithium cobaltate, an innovative combined recovery process of lithium iron phosphate and lithium cobaltate powders is proposed. The effects of leaching conditions on leaching performance are studied and the optimal leaching conditions are obtained. Under these conditions, the leaching efficiencies of lithium and cobalt ions reach up to 99.92% and 81.11%, respectively. After removing ferric ions from leachate, the cobalt and lithium ions are separately recovered from the leaching solution. The final precipitation rate of cobalt ions is up to 97.71% with the purity of cobalt oxalate as 99.94%. In addition, the precipitation rate of lithium ions is 78.54% and the purity of lithium carbonate reaches up to 99.94%. Finally, the reaction path and mechanism for the combined recovery of lithium iron phosphate–lithium cobaltate system are preliminary investigated.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3