Calculating porosity and permeability from synthetic micro‐CT scan images based on a hybrid artificial intelligence

Author:

Mohyeddini Amir1,Rasaei Mohammad Reza1

Affiliation:

1. Institute of Petroleum Engineering, School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran

Abstract

AbstractNowadays, lattice Boltzmann is one of the standard and exact methods of simulation in micro‐CT images of rock. However, it has a high weakness in run time. Therefore, the effort in this article is to reach a comprehensive substitute method for permeability calculation with less run time than the lattice Boltzmann method. The other purposes are the automation of processing operations, preparation of images, and in the end, the calculation of porosity. The best way to achieve these outcomes is to use hybrid artificial intelligence. In this research work, comprehensive model architecture has been used to design a hybrid artificial intelligence to be able to calculate permeability and porosity in complex images. A thousand images were randomly generated with high complexity, which makes the model comprehensive and extensible, and image processing was applied. After that, the lattice Boltzmann method as the direct simulation was selected. Finally, the convolutional neural network and multilayer perceptron based on a new and comprehensive model were evaluated for the first time; the mean squared error resulting from the evaluation of training data is 0.01, and the test data is 0.03. Expert systems have been used as a subset of artificial intelligence for automated image processing and porosity calculation. In this way, problems related to the direct implementation of classical algorithms for image processing, models, and patterns related to machine learning and needing an expert were solved to an acceptable extent, and an error of less than 5% was achieved.

Publisher

Wiley

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3