Application of artificial neural network for prediction of 10 crude oil properties

Author:

Alizadeh Shahla1,Ta Souvik1,Samavedham Lakshminarayanan12,Ray Ajay K.1

Affiliation:

1. Department of Chemical and Biochemical Engineering Western University London Ontario Canada

2. Department of Chemical and Biomolecular Engineering National University of Singapore Singapore Singapore

Abstract

AbstractThis study aims to develop an industrially reliable and accurate method to estimate crude oil properties from their Fourier transform infrared spectroscopy (FTIR) spectra. We used the complete FTIR spectral data of selected crude oil samples from seven different Canadian oil fields to predict 10 important crude oil properties using artificial neural networks (ANNs). The predicted properties include specific gravity, kinematic viscosity, total acid number, micro carbon content, and production of light and heavy naphtha, Kero, and distillate in oil refineries. The 107 different (65 light oil and 42 heavy/medium oil samples) crude oil samples used in this study came from seven oil fields and reservoirs across Canada. In line with standard practice, we used 80% of the dataset for training the ANN models and used the remaining 20% of the crude oil samples to test the models. In the ANN analysis, the mean squared error (MSE) was used as the loss function in models, and the mean absolute prediction error (MAPE) was used as a reference to compare the performance of different neural networks constructed with different numbers of layers. This work demonstrates that FTIR spectroscopy is a promising technique that provides rapid and accurate estimates for the oil properties of interest to the industry. A comparison of the values predicted by the validated ANN models and their corresponding measured (actual) values showed excellent prediction with the acceptable range of error (below 15%) aimed for by our industry partner for all properties except viscosity, for which building models based on the natural logarithmic values of measured viscosities significantly improved the results.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3